6 research outputs found

    Clustering-Based Personalization

    Get PDF
    Recommendation systems have been the most emerging technology in the last decade as one of the key parts in e-commerce ecosystem. Businesses offer a wide variety of items and contents through different channels such as Internet, Smart TVs, Digital Screens, etc. The number of these items sometimes goes over millions for some businesses. Therefore, users can have trouble finding the products that they are looking for. Recommendation systems address this problem by providing powerful methods which enable users to filter through large information and product space based on their preferences. Moreover, users have different preferences. Thus, businesses can employ recommendation systems to target more audiences by addressing them with personalized content. Recent studies show a significant improvement of revenue and conversion rate for recommendation system adopters. Accuracy, scalability, comprehensibility, and data sparsity are main challenges in recommendation systems. Businesses need practical and scalable recommendation models which accurately personalize millions of items for millions of users in real-time. They also prefer comprehensible recommendations to understand how these models target their users. However, data sparsity and lack of enough data about items, users and their interests prevent personalization models to generate accurate recommendations. In Chapter 1, we first describe basic definitions in recommendation systems. We then shortly review our contributions and their importance in this thesis. Then in Chapter 2, we review the major solutions in this context. Traditional recommendation system methods usually make a rating matrix based on the observed ratings of users on items. This rating matrix is then employed in different data mining techniques to predict the unknown rating values based on the known values. In a novel solution, in Chapter 3, we capture the mean interest of the cluster of users on the cluster of items in a cluster-level rating matrix. We first cluster users and items separately based on the known ratings. In a new matrix, we then present the interest of each user clusters on each item clusters by averaging the ratings of users inside each user cluster on the items belonging to each item cluster. Then, we apply the matrix factorization method on this coarse matrix to predict the future cluster-level interests. Our final rating prediction includes an aggregation of the traditional user-item rating predictions and our cluster-level rating predictions. Generating personalized recommendation for cold-start users, or users with only few feedback, is a big challenge in recommendation systems. Employing any available information from these users in other domains is crucial to improve their recommendation accuracy. Thus, in Chapter 4, we extend our proposed clustering-based recommendation model by including the auxiliary feedback in other domains. In a new cluster-level rating matrix, we capture the cluster-level interests between the domains to reduce the sparsity of the known ratings. By factorizing this cross-domain rating matrix, we effectively utilize data from auxiliary domains to achieve better recommendations in the target domain, especially for cold-start users. In Chapter 5, we apply our proposed clustering-based recommendation system to Morphio platform used in a local digital marketing agency called Arcane inc. Morphio is an smart adaptive web platform, which is designed to help Arcane to produce smart contents and target more audiences. In Morphio, agencies can define multiple versions of content including texts, images, colors, and so on for their web pages. A personalization module then matches a version of content to each user using their profiles. Our ongoing real time experiment shows a significant improvement of user conversion employing our proposed clustering-based personalization. Finally, in Chapter 6, we present a summary and conclusions for this thesis. Parts of this thesis were submitted or published in peer-review journal and conferences including ACM Transactions on Knowledge Discovery from Data and ACM Conferences on Recommender Systems

    Risk assessment in the laboratories of the research centers affiliated to Iranian Fisheries Research Organization

    Get PDF
    Identification of risks in laboratories and trying to create safe conditions is very important from different aspects. The main objective of this study was to evaluate the potential risks in the laboratories of three research centers affiliated to Iranian Fisheries Science Research Institute. In order to assess and classify risks associated with working in the laboratories (11 laboratories of the Persian Gulf and Oman Sea Ecological Research Center, 9 laboratories of National Shrimp Research Center and 2 laboratories of National Aquatic Organisms Processing Center), the method of "Failure Mode Effects Analysis" (FMEA) as well as some statistical methods were used. The risk levels in all the laboratories of the Persian Gulf and Oman Sea Ecological Research Center, except for benthos laboratory, could be evaluated as moderate or high. Only in the case of the sample preparation laboratory, significant differences between the values of RPN before and after corrective action could be observed. However, in this case the corrective actions have not been effective in decreasing the risk level. In most laboratories of National Shrimp Research Center, the corrective actions were effective in reducing the risk levels (with the exception of three laboratories including contaminants, microbiology and chemistry-physics). In both laboratories of National Aquatic Organisms Processing Center, after the corrective actions, the risk levels have been sharply reduced. In general it can be concluded that FMEA is an effective method for risk assessment in the research laboratories and appropriate statistical methods can also be used for complementary analysis

    On Cross-Domain Transfer in Venue Recommendation

    Get PDF
    Venue recommendation strategies are built upon Collaborative Filtering techniques that rely on Matrix Factorisation (MF), to model users’ preferences. Various cross-domain strategies have been proposed to enhance the effectiveness of MF-based models on a target domain, by transferring knowledge from a source domain. Such cross-domain recommendation strategies often require user overlap, that is common users on the different domains. However, in practice, common users across different domains may not be available. To tackle this problem, recently, several cross-domains strategies without users’ overlaps have been introduced. In this paper, we investigate the performance of state-of-the-art cross-domain recommendation that do not require overlap of users for the venue recommendation task on three large Location-based Social Networks (LBSN) datasets. Moreover, in the context of cross-domain recommendation we extend a state-of-the-art sequential-based deep learning model to boost the recommendation accuracy. Our experimental results demonstrate that state-of-the-art cross-domain recommendation does not clearly contribute to the improvements of venue recommendation systems, and, further we validate this result on the latest sequential deep learning-based venue recommendation approach. Finally, for reproduction purposes we make our implementations publicly available
    corecore